文章编号:1000-4874(2006)06-0796-09

# 油 ·水两相渗流问题的无网格 伽辽金法

## 李玉 $mu^1$ , 姚军<sup>2</sup>, 黄朝琴<sup>1</sup>

(1. 中国石油大学 (华东)工程力学系,山东东营 257061;

2 中国石油大学 (华东)石油工程学院,山东东营 257061)

摘 要: 该文应用无网格伽辽金法对油藏中的油 水两相渗流问题进行了研究。这种方法是基于移动最小二乘法来建 立近似函数的,与传统的最小二乘法相比它具有紧支性其系数矩阵是稀疏的。文中较为详细地描述了油藏地层中油 水两相 渗流数学模型的建立以及无网格伽辽金法的基本原理。推导了油水两相渗流问题的无网格伽辽金法具体计算格式,编制了 相应的计算程序进行实例计算,其计算结果是可靠有效的,为进一步研究利用无网格方法求解复杂介质、边界条件的油藏多 相渗流提供了基础。

**关 键 词**: 无网格伽辽金法;油藏两相渗流;移动最小二乘法;影响域 中图分类号: O359<sup>+</sup>.2 **文献标识码**:A

## Solving two-phase fluid flow in reservoir with meshless method

 $L I Yu-kun^{1}$ , YAO  $Jun^{2}$ , HUANG Zhao-qin<sup>1</sup>

(1. Dept of Mechanics, University of Petroleum, Dongying 257061, China;

2. School of Petroleum Engineering, University of Petroleum, Dongying 257061, China)

**Abstract:** In this paper, a kind of meshless (meshfree) methods, namely Element-Free Galerkin Meshless Method (EFGM), has been applied to the numerical simulation of two-phase flow through porous media in reservoir. The main feature of this approach is to use the approximation schemes in local supported domains based on Moving Least-Square method. As a result, Moving Least-Square method is different from the traditional LSM because it is local and its algebraic matrix is banded. In the numerical testing, it was applied to solve a 2D reservoir problem. Some preliminary numerical simulation results, which will be beneficial for us to further investigate reservoir simulations by the present method, have been obtained

Key words: Element-Free Galerkin Meshless Method; two-phase flow in reservoir; moving least-squares; domain of influence

\* **收稿日期**: 2006-08-21(2006-10-10**修改稿**) 作者简介: 李玉坤(1973~),男,,山东新泰人,讲师,博士生。

目前在解决油藏油 水两相渗流问题时,有限差 分法(EDM)、有限体积法(FVM)和有限单元法 (FEM)<sup>[11\_[5]</sup>为主要的数值计算方法;这些方法都是 以网格划分为前提的,在计算过程中网格一旦发生畸 变,计算就会失效。为解决这些问题就必需进行网格 重构,但这对计算精度和计算速度产生了较大的影 响;同时这些方法的前后处理较麻烦。因此近年来兴 起的无网格法<sup>[6]</sup>,由于不需要划分网格而受到了高 度重视。

对于无网格方法研究可以追溯到 20世纪 70年 代对非规则网格有限差分法的研究<sup>[7-9]</sup>,由于当时有 限元的巨大成功,这类方法没有受到重视。这种方法 建立在移动最小二乘法 (MLS)、核函数法和单位分解 法等方法的基础之上。历史最悠久的是光滑质点流 体动力学 (SPH)方法,并且成功的应用于天体物理 领域中<sup>[10]</sup>。Nayroles等人在提出的漫散元 (DEM ) 方法中首先使用移动最小二乘法<sup>[11]</sup>。Belytschkohe 改进了这种方法<sup>[12]</sup>,并把这种方法命名为无网格伽 辽金方法 (EFG)。曾清红等人<sup>[13-15]</sup>应用无网格伽辽 金法 (EFG)方法对单相稳定渗流问题的求解进行了 研究。

无网格伽辽金法是采用移动最小二乘法来构造 近似场函数的一种方法,已在很多领域得到了应 用<sup>[16-19]</sup>。其节点可以随机分布,且和积分网格无关, 通过对待求节点在其影响域内进行数值拟合,可以 建立高阶连续可导的近似场函数,因此具有灵活、精 度高的优点。然而,至今在国内外尚未见无网格法在 两相渗流问题计算中应用的报导,本文将无网格伽 辽金法引入油藏油 水两相渗流计算,旨在为油 水两 相渗流分析探索一个新的计算方法。

### 2 数学模型的建立

假设油藏地层中存在油水两相流体;油层厚度均 匀,且与面积相比较小;油藏中岩石和流体均可微压 缩;油藏流体的渗流符合达西定律;油藏岩石是各向 异性非均质的;整个渗流过程是等温;在考虑毛管压 力影响下,油水两相渗流的微分方程为:

$$\nabla \cdot \left( \frac{-{}_{o} KK_{w}}{\mathsf{\mu}_{o}} \nabla P_{o} \right) + Q_{o} = \frac{\partial (\phi_{o} S_{o})}{\partial t}$$
(1)

$$\nabla \cdot \left( \frac{W_{w} K K_{w}}{\mu_{w}} \nabla P_{w} \right) + Q_{w} = \frac{\partial (\phi_{w} S_{w})}{\partial t}$$
(2)

约束方程,即油、水两相的饱和度关系式及毛管压力 关系式:

$$P_{cow} = P_o -_w, \qquad S_o + S_w = 1$$
 (3)

边界和初始条件,其中:\_\_\_为封闭边界, n 为油藏边 界外法线方向; \_\_\_为边底油水边界; \_\_\_3为井壁边界。

$$P /_{t=0} = P_i, \qquad S_w /_{t=0} = S_{wi}$$
 (4)

$$\frac{\partial P}{\partial n} / _{1} = 0$$
 (5)

$$P / {}_{2} = P_{t}, \qquad S_{w} / {}_{2} = 1 - S_{or} \qquad (6)$$

$$P \mid_{3} = P_{w}, \qquad \frac{1}{r} \frac{\partial P}{\partial r} \mid_{3} = \frac{Qu}{2Kh}$$
(7)

令流动系数 :

$$u_{nl} = \frac{K_l K_m}{\mu_m} (m = 0, w; l = x, y, z)$$

综合压缩系数:

$$C_{f} = S_{o}C_{fo} + S_{w}C_{fw} = \frac{\phi^{0}}{\phi}C_{R} + C_{o} + C_{w}$$

利用 (3)式及相应的状态方程可将 (1)和 (2)式简化 为:

油相压力方程:

$$\nabla \cdot \left[ \left( \begin{array}{c} o + \end{array}_{w} \right) \nabla \cdot P_{o} - \phantom{a}_{w} \nabla \cdot P_{caw} \right] + q_{aw} - \Phi C_{f} \frac{\partial P_{o}}{\partial t} = 0 \qquad ($$

(8)

水相饱和度方程:

$$\nabla \cdot ( _{w} \nabla \cdot P_{o} - _{w} \nabla \cdot P_{cow}) + q_{v} - \phi \frac{\partial S_{w}}{\partial t} = 0$$
(9)

式中:

$$q_{ow} = \left( \begin{array}{c} \underline{Q}_{o} \\ 0 \end{array} + \begin{array}{c} \underline{Q}_{w} \\ w \end{array} \right) , \quad q_{v} = \left( \begin{array}{c} \underline{Q}_{w} \\ w \end{array} \right)$$

对于上述方程(8)和(9),采用隐式压力和隐式

饱和度交替求解的方法进行求解。先对时间域进行 离散,然后由 (8)式得到 n + 1时刻的油相压力值  $P_o^{n+1}$ 如下,在求解时个参数均取为 n时刻的值。

$$R_{p} = \nabla \cdot \left[ \left( \begin{smallmatrix} n \\ o \end{smallmatrix} + \begin{smallmatrix} n \\ w \end{smallmatrix} \right) \nabla P_{o}^{n+1} - \begin{smallmatrix} n \\ w \end{smallmatrix} \nabla P_{cow}^{n} \right] + q_{ow}^{n} - \left[ \begin{smallmatrix} \frac{\phi_{C}}{f} \end{smallmatrix} \right]^{n} \left( P_{o}^{n+1} - P_{o}^{n} \right) = 0$$
(10)

再把  $P_o^{n+1}$ 代入 (9) 式求出 n + 1时刻的水相饱和 度值,其他参数也均取为 n时刻的值。

$$R_{s} = \nabla \cdot \left( \begin{smallmatrix} n \\ w \\ \nabla \end{smallmatrix} \right) \cdot P_{o}^{n+1} - \begin{smallmatrix} n \\ w \\ \nabla \end{array} \cdot P_{cow}^{n} + \left( \begin{smallmatrix} -\frac{\phi}{w} \\ -\frac{\phi}{w} \end{smallmatrix} \right) + \left( \begin{smallmatrix} -\frac{\phi}{w} \\ -\frac{\phi}{w} \\ -\frac{\phi}{w} \end{smallmatrix} \right) \cdot \left( \begin{smallmatrix} -\frac{\phi}{w} \\ -\frac{\phi}$$

依此类推,可求出各个时刻的压力场和饱和度场 的分布。

### 3 无网格伽辽金法

该方法采用移动最小二乘法来构造近似函数,然 后由伽辽金法对方程进行离散。在许多情况下,由伽 辽金法得到的方程系数矩阵是对称的。

3.1 移动最小二乘法

在分析域 内有场函数 u(x) 以及一组随机分布 的离散节点  $x_i$  (i = 1, 2...n),用  $_i$ 表示节点  $x_i$ 的紧支 域 (也称作节点  $x_i$ 的影响域),二维问题中紧支域常 为圆盘形 (或矩形)。使用 MLS (Moving Least-Squar) 进行全局近似,对任意的 x ,有:

$$u^{h}(x, \overline{x}) = \prod_{i=1}^{m} p_{i}(\overline{x}) a_{i}(x) = p^{T}(\overline{x}) a(x) \quad (12)$$

其中  $\overline{x} = [x, y, z]^{T}$ 是计算点 x的邻域内 x各点的空 间坐标,  $u^{h}(x, \overline{x})$  或  $u^{h}(x)$ 是函数 u(x)的近似表达 式;  $p_{i}(x)$ 为基函数; m为基函数的项数;  $a_{i}(x)$ 相应 的系数。

对于二维问题常用的是线性基和平方基。 线性基:

$$p^{\mathrm{T}}(\bar{x}) = [1, x, y, xy, x^{2}, y^{2}], m = 6$$

 $p^{\mathrm{T}}(\bar{x}) = [1, x, y], m = 3$ 

a(x)系数不是常数,而是空间坐标 x的函数通过对 适合于局部近似的加权最小二乘得到。设计算点 x的 邻域 \_x包括 N个节点,近似函数在  $\overline{x} = x_i$ 的误差的加 权平方和为

$$J = \prod_{I}^{N} (x) [u^{h}(x, x_{I}) - u(x_{I})]^{2} =$$

$$\prod_{I}^{N} (x) [\prod_{i=1}^{m} p_{i}(x_{I}) a_{i}(x) - u_{I}]^{2} (15)$$

式中 (x) 为紧支域的权函数, 为了求得系数 a(x) 我们令 J(x) 取最小值, 可得:

i = 1

$$A(x) a(x) = B(x) u$$
 (16)

其中, A, B矩阵如下:

1

$$A(x) = \prod_{I=1}^{N} (x) p(x_{I}) p^{T}(x_{i}) = p^{T}(x) (x) p(x)$$
(17)

$$B(x) = \sum_{I=1}^{N} f(x) p_{I}(x_{I}) = p^{T}(x) (x) (x) =$$

$$\begin{bmatrix} 1 & (x) & p(x_1) & 2 & (x) & p(x_2) & \dots & N & (x) & p(x_N) \end{bmatrix} (18)$$

由方程 (5)可得到待定系数

$$a(x) = A^{-1}(x)B(x)u$$
 (19)

将式 (8)代入式 (1)中得

$$a^{h}(x, \overline{x}) = \prod_{i=1}^{m} p_{i}(\overline{x}) a_{i}(x) = p^{T}(\overline{x}) a(x) =$$

$$p^{\mathrm{T}}(\overline{x})A^{-1}(x)B(x)u = N(x, \overline{x})u = N_{I}u_{I}$$
 (20)  
其中形函数

$$N(x, \overline{x}) = p^{\mathrm{T}}(\overline{x})A^{-1}(x)B(x)$$
(21)

(14) 问题的求解涉及形函数的导数:

令

(13)

$$r = A^{-1}p \tag{22}$$

并对式 (21)求导,可得到形函数的一阶和二阶导数 为

$$N_{,i}^{k} = r_{,i}^{\mathrm{T}} B + r_{,i}^{\mathrm{T}} B_{,i} \qquad (23)$$

$$N_{,ij}^{k} = r_{,ij}^{\mathrm{T}} B + r_{,i}^{\mathrm{T}} B_{,j} + r_{,j}^{\mathrm{T}} B_{,i} + r_{,j}^{\mathrm{T}} B_{,i}$$
(24)

其中

$$r_{i} = A^{-1} (p_{i} - A_{i} r)$$
 (25)

$$\mathbf{r}_{ij} = \mathbf{A}^{-1} \left( p_{,ij} - \mathbf{A}_{,i} \mathbf{r}_{,j} - \mathbf{A}_{,j} \mathbf{r}_{,i} - \mathbf{A}_{,ij} \mathbf{r}_{,i} \right)$$
(26)

权函数是 MLS近似中的重要组成部分,其选择 目前还没有理论上的具体规则,带有某种任意性,本 文采取的是四次样条函数,它是 *C<sup>2</sup>()*连续函数式:

$$(r) = \begin{cases} 1 - 6r^{2} + 8r^{3} - 3r^{4}, & r = 1 \\ 0, & r > 1 \end{cases}$$
(27)

影响域对模拟的精度和计算量有直接的关系,本 文的影响域半径取为  $d_{m_1} = scale \times s[k]$ ,其中 s[k]为 节点 I与距其最近的第 k个节点之间的距离, scale是 大于 1的乘子。

#### 3.2 无网格伽辽金法格式推导

下面以二维问题进行讨论。由上述移动最小二 乘法可构造出油相压力和水相饱和度的近似解:

$$\widetilde{P} \qquad \sum_{i=1}^{N} N_i p_i = N_I p_I,$$
$$\widetilde{S} \qquad \sum_{i=1}^{N} N_i S_i = N_I p_I$$

在求解域上 采用伽辽金法得到式 (10)的等效积分 格式:

$$[N]^{\mathrm{T}}[R_p]\mathrm{d} = 0$$

具体推导简化如下

$$[N ]^{\mathrm{T}} \begin{bmatrix} \frac{\partial}{\partial x} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} n & \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \end{pmatrix} + \frac{\partial}{\partial y} \end{pmatrix} + \frac$$

$$\frac{\partial}{\partial x}\left(\begin{array}{c} n\\ wx\\ wx\\ \hline \partial x\end{array}\right) + \frac{\partial}{\partial y}\left(\begin{array}{c} n\\ wy\\ \hline \partial y\\ \hline \partial y\end{array}\right) Jd -$$

$$[N ]^{\mathrm{T}} [\frac{\partial}{\partial x} ( {}^{n}_{wx} \frac{\partial P_{cow}^{n}}{\partial x} ) +$$

$$\frac{\partial}{\partial y} \left( \begin{array}{c} n \\ wy \end{array} \frac{\partial P_{cow}^{n}}{\partial y} \right) J d + \left[ N \right]^{\mathrm{T}} q_{ow}^{n} d -$$

$$[N]^{\mathrm{T}} \left[ \phi^{n} C_{f}^{n} \frac{\widetilde{P}_{o}^{n+1}}{\left(t\right)^{n}} \right] d = 0 \qquad (28)$$

⑦ 对 (27)式中的第 1部分进行分部积分如下:

$$[N ]^{T} \left[ \frac{\partial}{\partial x} \left( \int_{ox}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \right) + \frac{\partial}{\partial y} \left( \int_{ey}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) \right] d = \frac{\partial}{\partial y} \left( \int_{ey}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial x} \left( \left[ N \right]^{T} \int_{ox}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \right) + \frac{\partial}{\partial y} \left( \left[ N \right]^{T} \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right] d = \frac{\partial}{\partial y} \left( \left[ N \right]^{T} \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right] d = \frac{\partial}{\partial y} \left( \left[ N \right]^{T} \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right] d = \frac{\partial}{\partial y} \left( \left[ N \right]^{T} \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right] d = \frac{\partial}{\partial y} \left( \left[ N \right]^{T} \left( \int_{ox}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \right) + \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{oy}^{n} \frac{\partial}{\partial y} \right) d = \frac{\partial}{\partial y} \left( \int_{\partial$$

(29)

其中式 (29)等号右端第一项:

$$\begin{bmatrix} \frac{\partial}{\partial x} ([N]^{T} & \frac{n}{ox} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x}) + \\ \frac{\partial}{\partial y} ([N]^{T} & \frac{n}{oy} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y}) ]d = \\ [[N]^{T} ( & \frac{n}{ox} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x}) + [N]^{T} & \frac{n}{oy} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} ]dS (30) \end{bmatrix}$$

此项为沿 边界的环路积分,对于具有外部封 闭边界条件的求解域 ,该积分为零,故式 (29)写成 如下形式:

$$[N ]^{\mathrm{T}} [\frac{\partial}{\partial x} ( \int_{ox}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} ) + \frac{\partial}{\partial y} ( \int_{oy}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} ) ]d =$$

$$- \left[\frac{\partial [N]}{\partial x}\right]^{\mathrm{T}} \left( \int_{-\infty}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \right) +$$

$$\frac{\partial [N] I^{\mathrm{T}}}{\partial y} \left( \begin{array}{c} {}^{n} \\ {}^{oy} \end{array} \frac{\partial \widetilde{P}^{n+1}_{o}}{\partial y} \right) J \mathrm{d}$$
(31)

把 
$$\tilde{P}^{n+1}$$
  $\sum_{i=1}^{N} N_{I} P_{i}^{n+1} = N_{I} P_{I}^{n+1}$ 代入上式并写成矩阵形式如下:

 $[N ]^{T} \left[ \frac{\partial}{\partial x} \left( - \int_{ax}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial x} \right) + \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial \widetilde{P}_{o}^{n+1}}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left( - \int_{ay}^{n} \frac{\partial}{\partial y} \right) ] d = \frac{\partial}{\partial y} \left$ 

其中:

$$B = \begin{bmatrix} \frac{\partial V_1(\overline{x})}{\partial x} & \frac{\partial V_2(\overline{x})}{\partial x} & \dots & \frac{\partial V_N(\overline{x})}{\partial x} \\ \frac{\partial V_1(\overline{x})}{\partial y} & \frac{\partial V_2(\overline{x})}{\partial y} & \dots & \frac{\partial V_N(\overline{x})}{\partial y} \end{bmatrix},$$
$$n = \begin{bmatrix} n & 0 \\ 0 & n \\ 0 & n \end{bmatrix}$$
$$d^{n+1} = \begin{bmatrix} P_{o1}^{n+1} & P_{o2}^{n+1} & \dots & P_{oN}^{n+1} \end{bmatrix}^{\mathrm{T}}$$

同理对 (28)式中的第 2和 3部分进行分部积分,可 得

$$[N]^{\mathrm{T}} \left[ \frac{\partial}{\partial x} \left( \begin{array}{c} m \\ m \\ w \\ x \end{array} \right)^{n+1} \right] + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} \left( \frac{\partial}{\partial y} \right)^{n+1} \right) d = \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ y \end{array} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \left( \begin{array}{c} m \\ w \\ d + \frac{\partial}{\partial y} \right)^{n+1} d + \frac{\partial}{\partial y} \left( \begin{array}{c} m$$

 $- [N]^{T} \left[ \frac{\partial}{\partial x} \left( \prod_{wx}^{n} \frac{\partial P_{cow}^{n}}{\partial x} \right) + \frac{\partial}{\partial y} \left( \prod_{wy}^{n} \frac{\partial P_{cow}^{n}}{\partial y} \right) \right] d =$ 

-  $B^{\mathrm{T}}_{w}^{n}Bd$  ·  $d_{cow}^{n}$ 

其中:

$${}^{n}_{w} = \begin{bmatrix} {}^{n}_{wx} & 0 \\ {}^{n}_{wy} & {}^{n}_{yy} \end{bmatrix},$$

 $d_{cow}^{n} = \begin{bmatrix} P_{cow1}^{n} & P_{cow2}^{n} & \dots & P_{cowN}^{n} \end{bmatrix}^{\mathrm{T}}$ 

式 (28)中的第 4部分可写成如下:

$$[N]^{\mathrm{T}} [\phi^{n} C_{f}^{n} \frac{\widetilde{P}_{o}^{n+1}}{(t)^{n}} \frac{\widetilde{P}_{o}^{n}}{(t)^{n}} ]\mathrm{d} = \frac{1}{(t)^{n}} [N]^{\mathrm{T}} [\phi^{n} C_{f}^{n}] [N] \mathrm{d} \cdot d^{n+1} - \frac{1}{(t)^{n}} [N]^{\mathrm{T}} [\phi^{n} C_{f}^{n}] [N] \mathrm{d} \cdot d^{n} \qquad (35)$$

其中:

$$N = \begin{bmatrix} N_1(\overline{x}) & N_2(\overline{x}) & \dots & N_N(\overline{x}) \end{bmatrix}$$

把式 (32)、(33)、(34)和式 (35)代入式 (28),便 得到其积分弱形式并写成矩阵表示形式如下:

$$[K_o]d^{n+1} = [F_o]$$
(36)

其中:

$$[K_{o}] = [K_{o1}] + [K_{o2}]$$

$$[F_{o}] = [F_{o1}] + [F_{o2}] + [F_{o3}]$$

$$[K_{o1}] = B^{T} (\binom{n}{o} + \frac{n}{w})Bd ,$$

$$[K_{o2}] = \frac{1}{(t)^{n}} [N]^{T} (\Phi C_{f})^{n} Nd$$

$$[F_{o1}] = B^{\mathrm{T}} {}_{w}^{n} B \mathrm{d} \cdot d_{cow}^{n}$$

$$[F_{o2}] = N^{\mathrm{T}} q_{v}^{n} \mathrm{d} ,$$

$$[F_{o3}] = \frac{1}{(t)^n} N^{\mathrm{T}} (\Phi C_f)^n N \mathrm{d} \cdot d^n$$

同理对于水相饱和度方程(11),在求解域 上
 采用伽辽金法得到其等效积分格式: [N]<sup>T</sup>[R,]d
 (34) = 0;经分部积分得到其积分弱形式,其推导过程与

上述压力方程类似,写成矩阵表示形式如下:

$$[K_{s}]f^{s+1} = [F_{s}]$$
(37)

其中:

$$[K_s] = \frac{1}{(t)^n} N^{\mathrm{T}} \phi^n N \mathrm{d} ,$$

$$f^{n+1} = [S^{n+1}_{w1} \quad S^{n+1}_{w2} \quad \dots \quad S^{n+1}_{wN} \quad J^{\mathrm{T}}$$

$$[F_{s}] = [F_{s1}] + [F_{s2}] + [F_{s3}] + [F_{s4}]$$

$$[F_{s1}] = B^{T} {}_{w}^{n} B d \cdot d_{cow}^{n},$$

$$[F_{s2}] = -B \quad WB \mathbf{d} \cdot \mathbf{a}$$
$$[F_{s3}] = N^{\mathrm{T}} q_{W}^{n} \mathbf{d} ,$$

$$[F_{s4}] = \frac{1}{(t)^n} N^{\mathrm{T}} \phi^n N \mathrm{d} \cdot f$$

#### 3.3 边界条件处理

按照上述方法得到的总体刚度矩阵是奇异的,因 而它的逆不存在,故在求解之前,必须将边界条件引 入方程中。

对油藏数值模拟问题,常遇到两类边界条件,一 类是封闭边界(断层),另一类是定压边界(活跃边底 水、定压及定产油水井边界)。封闭边界属于第二类 边界条件,在上述方程的推导过程中直接代入方程, 隐含地自然得到满足。定压边界属于第一类边界条 件,也叫做强制性边界条件,本文通过罚函数法引入 强制性边界条件。方程(28)在引入边界条件后,形 式如下:

$$\{ [K_o] + [K_{oa}] \} d^{n+1} = [F_o] + [F_{oa}]$$
(38)

 $[K_{oa}] = N^{T}Nd$ ,  $[F_{oa}] = N^{T}P_{w}d$ , 其中为 罚函数取值  $(10^{5} \sim 10^{9})K_{oa}$ 

在饱和度求解时,注水井井壁及边水和底水边界 处均作为强制性边界条件处理: *S*<sub>w</sub> = 1 - *S*<sub>o</sub>,;其它则 作为封闭边界。方程 (29)在引入边界条件后,形式 如下:

$$\{ [K_s] + [K_{sa}] \} f^{n+1} = [F_s] + [F_{sa}]$$
 (39)

$$[K_{sa}] = N^{\mathrm{T}}Nd$$
,  $[F_{sa}] = N^{\mathrm{T}}S_{w}d$ 

## 4 程序流程

按照上述计算方法的原理,编写相应的计算程 序,程序流程如下。

4.1 在求解域 中布置 N个节点,由这些节点拟合 任意点的场函数值

4.2 给求解域 布置背景网格,这些背景网格与节 点无关,仅用来完成区域积分

4.3 在每个背景网格内布置高斯积分点

4 4 循环所有的节点,计算所有节点和高斯积分点 的形函数及其导数

4.5 对时间 *"*循环,求解每一时刻的油相压力场和 水相饱和度场的分布。

4.5.1 循环所有背景网格

4. 5.1.1 对背景网格内的高斯点进行循环

4.5.1.2 若高斯点在 则进行 4.5.1.2-4.5.1.4,否 则转至 4.5.1.5

4 5.1.3 由 4 4可得每一高斯积分点的形函数及其 导数,并组装矩阵 *B* 

4.5.1.4 组装系数矩阵 [K<sub>o</sub>]和载荷列阵 [F<sub>o</sub>]

4.5.1.5结束高斯点的循环

结束背景网格循环。

4.5.2 引入边界条件循环所有边界,在边界线上布置高斯积分点并完成边界积分并组装系数矩阵 [K<sub>oa</sub>]和载荷列阵[F<sub>oa</sub>]。

4.5.3 求解方程 (29)得到各节点在此时刻的场函 数值,进而求的整个求解域上的压力场分布。

4.5.4 循环 4.5.1-4.5.3中的各步骤来求解此时刻的饱和度场分布(代入相应的系数矩阵即可)。

4.6 **结束程序** 

5 算例分析

油藏均质等厚,岩石和流体均微可压缩,流体渗流符合达西定律,不考虑毛管压力和重力的影响。如

| 表 1 相对渗透率与饱和度天系  |                         |                         |                         |                         |                         |                      |                      |                      |                      |                      |                      |                         |
|------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|
| 序号               | 1                       | 2                       | 3                       | 4                       | 5                       | 6                    | 7                    | 8                    | 9                    | 10                   | 11                   | 12                      |
| Sw<br>Kro<br>Krw | 0. 00<br>0. 88<br>0. 00 | 0. 10<br>0. 84<br>0. 00 | 0. 20<br>0. 78<br>0. 00 | 0. 30<br>0. 69<br>0. 03 | 0. 40<br>0. 55<br>0. 07 | 0.50<br>0.31<br>0.11 | 0.60<br>0.19<br>0.16 | 0.70<br>0.10<br>0.23 | 0 80<br>0 02<br>0 30 | 0.88<br>0.00<br>0.37 | 0 94<br>0 00<br>0 48 | 1. 00<br>0. 00<br>0. 60 |

图 1所示油层长 300 m,宽 300 m,油藏厚度为 h = 10 m.孔隙度  $\phi = 0.25$ ,绝对渗透率  $K = 1 \, \mu m^2$ 综合导 压系数为  $C_f = 1 \times 10^4$  /MPa,油黏度  $\mu_o = 5 \text{ mPa} \cdot \text{s}$ , 水黏度  $\mu_{i} = 1 \text{ mPa} \cdot s$ ,原始地层压力为  $P_{i} = 12$ MPa,原始含油饱和度为  $S_o = 0$  8即含水饱和度 S = 0. 2,注入井井底定压 Piv = 15 MPa,生产井井底定压  $P_w = 10$  MPa。其相对渗透率与饱和度关系如下表 1 所示。





#### 图 2 13 ×13 = 169规则布点模型

调用程序对上述问题进行求解,影响域半径 dml = 2 0 ×s/9/,时间步长取为 0.01 d,罚函数  $= 10^{7}$ ,采用 9点高斯积分计算。图 2为 13 ×13 = 169规则 布点图,背景积分网格尺寸取为 50 m.图 3及图 4分





#### 图 4 两天后的水相饱和度分布

别为计算 200步后即两天后的油相压力和水相饱和 度的分布。图 5为 21 x21 = 441规则布点图,背景积 分网格尺寸取为 25 m,图 6及图 7分别为两天后的 油相压力和水相饱和度的分布。

把本文方法的计算结果与文献 [20]中有限差分 法程序 (采用 10 ×10网格,时间步长 0.01 d)的计算 结果如图 8进行比较,可发现 21 ×21 = 441规则布点 所得到的解与有限差分法基本一致,说明本文方法是 可靠有效的。两种不同布点方案的结果存在差异 .主 要是由于两者的节点影响域半径不同而造成的,关于 如何获得节点的影响域以及最佳节点布置方案目前 还没有有效的方法,有待于进一步研究。



图 7 两天后的水相饱和度分布

结论 7

无网格法是近十年才在各领域中应用起来的一 种新的数值计算方法,本文对其基本的理论及其在 油 水两相渗流问题中的应用进行了研究,并编写了 相应的计算程序进行实例计算。和有限差分法、有限 元法、有限体积法相比,无网格法具有以下的优缺点:

(1)数据结构简单,无网格法只需要各个结点的

独立信息,而不要求单元信息以获得结点间的相互关 系,尤其是使用随机结点时,前处理工作得到进一步 简化,对边界条件的处理更加简单且易于实现。



图 8 两天后的水饱和度分布 (有限差分法)

(2)计算精度高,从已有的计算结果表明无网格 法比有限元法有更高的精度,并且具有高阶连续性, 这保证了结果的连续性,后处理简单,尤其是对局部 高梯度问题,有限差分法、有限元法往往误差较大,结 果失真,而无网格法仍然可获得较高的精度。

(3)计算程序的稳定性及结果的精度过分依赖 于参数的选择如权函数、影响域半径,计算量一般较 有限元大 3-10倍,这些都有待干理论上的进一步完 善。

无网格方法取消了插值函数对网格的依赖,基于 一系列节点进行场函数拟合,这样既避免了网格划分 的复杂过程(插值点可任意布置),又不会碰到网格 畸变这样的问题,所以这种方法具有重要的研究价值 和应用价值。

## 符号参数的物理意义

", "—水相、油相的密度;

 $P_w$ ,  $P_o$  (Pa) —水相、油相的压力;

Q<sub>w</sub>, Q<sub>a</sub>—水相、油相的源 (汇)项,单位时间内单 位地层体积内的产出 (注入)量:

- $\mu_{a}, \mu_{a}$ —水、油的黏性系数;
- $K_{w}, K_{m}$ —相对渗透率;
- *S*<sub>w</sub>, *S*<sub>o</sub> 水相、油相的饱和度;

 $\phi$ —多孔介质的孔隙度;

- $P_{cov}$  —毛管压力;
- *K —*绝对渗透率。

for arbitrary meshes [J]. Comput Struct, 1975, 5: 45-58.

- [10] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astron J., 1977, 8(12):1013-1024.
- [11] NAYROLES, TOUZOT, V LLON. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Comp. Mech 1992, 10: 307-318
- [12] Belytschko T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256
- [13] 曾清红,卢德唐. 含有启动压力梯度的渗流问题及其无 网格解法 [J]. 计算力学学报,2005,22(4):443-446
- [14] 曾清红,卢德唐等.无网格方法求解稳定渗流问题 [J]. 计算力学学报,2003,20(4): 440-445.
- [15] 曾亿山,卢德唐,晏忠良,曾清红.无网格方法在油藏工 程中的应用初探[J].油气井测试,2003 12(5): 9-13.
- [16] 张雄,刘岩. 无网格法 [M]. 北京:清华大学出版社, 2005. 1-94.
- [17] LU Yan, ZHANG Xiong, LU Ming-wan Meshless least-squares method for solving the steady-state heat conduction equation [J]. Tsinghua Science and Technology, 2005, 10 (1): 61-66
- [18] 高志华,曾辉辉等.无单元伽辽金法及其在瞬态温度场 中的应用研 [J].冰川冻土,2005:27(4):557-562
- [19] 龙述尧,陈莘莘.弹塑性力学问题的无单元伽辽金法 [J].工程力学,2003,20(2):66-70.
- [20] 陈月明. 油藏数值模拟基础 [M]. 东营:石油大学出版 社, 1989.

## 参考文献:

- MCM CHAEL C L, THOMAS G W. Reservoir simulation by Galerkin 's method [R]. SPE 3558 1973. 125-138
- [2] DALEN V. Simplified finite-element models for reservoir flow problem s[R]. SPE 7196 1979. 333-343.
- [3] YOUNGL C. A finite-element method for reservoir simulation [R]. SPE 7913, 1979. 41-51.
- [4] 程林松,郎兆新.水平井油 水两相渗流的有限元法 [J]. 水动力学研究与进展,A辑,1995,10(3):309-315.
- [5] 郭永存,卢德唐,马凌宵.低渗透油藏渗流的差分法数值
   模拟[J].水动力学研究与进展,A辑,2004,19(3):288-293.
- [6] BELYTSCHKO T, KRONGAUZ Y, ORGAN D, FLEM NG M, KRYSL P. Meshless methods: An overview and recent developments [J]. Comput Methods App1 Mech Engrg , 1996, 139: 3-47.
- [7] L ISZKA T, ORK ISZ J. Finite difference method for arbitrary irregular meshes in nonlinear problems of applied mechanics [C]. In: V SM iR t, San Francisco, 1977.
- [8] LUO Y, HAUSSLER-COMBE U. A generalized finite difference method based on minimizing global residual[J]. Comput Methods Appl Mech Engrg, 2002, 191: 1421-1438.
- [9] PERRONE N, KAO R. A general finite difference method